A Note on Bounded-Weight Error-Correcting Codes

نویسندگان

  • Russell Bent
  • Michael Schear
  • Lane A. Hemaspaandra
  • Gabriel Istrate
چکیده

This paper computationally obtains optimal bounded-weight, binary, error-correcting codes for a variety of distance bounds and dimensions. We compare the sizes of our codes to the sizes of optimal constant-weight, binary, error-correcting codes, and evaluate the di erences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bounded-Weight Error-Correcting Codes

This paper computationally obtains optimal bounded-weight, binary, errorcorrecting codes for a variety of distance bounds and dimensions. We compare the sizes of our codes to the sizes of optimal constant-weight, binary, errorcorrecting codes, and evaluate the differences.

متن کامل

The Second Generalized Hamming Weight of the Dual Codes of Double-error Correcting Binary Bch-codes

In this note we determine the second generalized Hamming weight of the dual codes of binary doubleerror correcting BCH-codes.

متن کامل

Bounds on the undetected error probabilities of linear codes for both error correction and detection

The (n, k , d 2 2t + 1) binary linear codes are studied, which are used for correcting error patterns of weight at most t and detecting other error patterns over a binary symmetric channel. In particular, for t = 1, it is shown that there exists one code whose probability of undetected errors is upper bounded by (n + 1]2"-k n ] l when used on a binary symmetric channel with transition probabili...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Improved Construction Methods for Error Correcting Constant Weight Codes

Two construction methods for t error correcting constant weight codes are developed. Both of these methods are improvements over the existing codes. One construction is recursive, which is based on the observation that a 2t error correcting code can be built by concatenating two t error correcting codes. This results in the reduction of code word length for higher t values. The other constructi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. UCS

دوره 5  شماره 

صفحات  -

تاریخ انتشار 1999